
Manatee Integration Guide

February 25, 2025

Manatee Integration Guide February 25, 2025

Contents

Introduction 2
Integration types . 2
The target application . 3

Approaches to integration . 3
Automation . 3
Using the Manatee external CCOW API . 5
Implementing a customwrapper . 6

Introduction

One of the primary usecases for Manatee is integration of applications running on your desktop. In‑
tegration may take many forms but a often used approach (within healthcare) is by using the CCOW
standard.

TheCCOWstandardprovides a framework for build a “shared context” inwhichapplications canagree
on a shared state. This can be used to ensure that e.g. the same patient is selected in a suite of appli‑
cations running on the same desktop. CCOW also specifies functionality to allow one application to
send amessage to another to trigger some internal state change e.g. causing the application receiving
the message to trigger an internal function like navigating to specific view.

In order to integrate an application with Manatee you first have to consider what type of integration
you need and then the application itself.

Integration types

Whenwe talk about integration typeswemean the functionality youwant fromyour integration. We’ll
go through a few base cases here:

State sharing

State sharing is the standard CCOW functionality. You want you applications to share a part of their
state and have that state synchronized across applications. An example here is sharing the patient
and when you change the patient in one application you want all applications to switch to the same
patient. This is the typical two‑way state synchronization approach, but you can also vary this s.t. one
application simply shuts downwhene.g. thepatient changes if for instance it is not possible to change
patient here.

2

Manatee Integration Guide February 25, 2025

Launch with context

Another type of integration is to launch a secondary application fromwithin a given other application.
The newly launched application may have some context in which it is started e.g. showing the same
patient as the application fromwhich it was launched.

Navigate to internal view

Yet another example similar to launchingwith context is if youwant to navigate to some internal view
given a key (like a patient identifier) from one application into another. A healthcare example here is
to select a patient identifier and then open e.g. the EMR for that patient.

These are the most typical examples other integration types are possible.

The target application

When consideringwhich integration approach to take then the application itself is themost important
aspect. First and foremost considerwhether it is a possibility tomake changes to the application itself
or whether the application exposes an interface (API) that you can access. If neither of these options
exist then an approach involving automation of the application is the obvious choise. Otherwise an
integrationwhere you augment the application to interactwithManatee using its external API orwrap
the application in a .NET based solution using our plugin API.

Approaches to integration

Automation

Using our automation solution you can augment closed‑source applications (web, java, native and
others) with functionality s.t. they can be launched in a given context, integrate in context sharing
and can handle custom actions (e.g. navigation).

Implementing state sharing is donebywriting small snippets of code that interactwith and read from
the user interface of the application. A simple example is enabling an application to participate in a
two‑way context sharing session.

3

Manatee Integration Guide February 25, 2025

Figure 1: Our simple example application

To accomplish this you would need to write two code snippets; one to read the current value of the
state from the application and one to set the state of the application to the desired value. Consider a
simple application with a text‑field that displays the current patient identifier and a button to switch
to a patient if you change the identifier. The two snippets would then look like:

1 Value = new Field("**/PatientIdentifier").read();

Which creates a Field that represents the patient identifier text‑field and then reads the content. Man‑
atee would then take care of updating the shared context and all the applications that participate
in the context when the patient identifier changes. To be able to switch the patient here if another
application changes the patient in the shared context you would do:

1 new Field("**/PatientIdentifier").input(Value);
2 new Field("**/Switch patient").click();

Which simply writes the newpatient identifier into the text‑field and then clicks the button to actually
switch the patient. It is also possible to implement one way sharing where an application can only
read or only write its state. This is done by simply not configuring the relevant code snippet.

To implement launching the application you would simply need to define the application with the
proper arguments in our configuration UI, e.g.:

4

Manatee Integration Guide February 25, 2025

Figure 2: Path to the application and the arguments

Here the PatientIdentifier (enclosed in double curly brackes) refers to the value of the patient
identifier stored in the shared context.

Navigating to an internal view is done with small code snippets similarly to how state sharing was
implemented.

Using automation as an integrationmechanism is a cheap and fast way to integrate an application in
a shared CCOW context and works for most applications. For state sharing the state that you need to
synchronise must be available in the user interface of the application in order for two‑way sharing to
be implemented.

Using the Manatee external CCOW API

If you are able to modify source code of the application, then you can use our external API to inter‑
act directly with the CCOW context manager that is responsible for coordinating state changes and
invoking actions on participating applications. We support the following protocols;

• JSON‑RPC over WebSockets
• JSON‑RPC over NamedPipes
• JSON‑RPC over the NetString protocol (raw TCP)
• gRPC
• Standard HTTP CCOWmapping
• Standard ActiveX CCOWmapping

Using theseprotocols you can implement state sharing, navigating to internal views andother actions
as custom tasks in the target application and since you have access to the full internal state of your
application you don’t rely on the user interface to display the information you need. You provide a C#

5

https://docs.sirenia.io/manatee/v2.0/api/
https://docs.sirenia.io/manatee/v2.0/api/json-rpc/#websockets
https://docs.sirenia.io/manatee/v2.0/api/json-rpc/#namedpipes
https://docs.sirenia.io/manatee/v2.0/api/json-rpc/#netstring
https://docs.sirenia.io/manatee/v2.0/external-apis/grpc/
https://gitlab.com/sirenia/open/dotnetcontextparticipant
https://gitlab.com/sirenia/open/dotnetcontextparticipant

Manatee Integration Guide February 25, 2025

example application which uses the JSON‑RPC over NetString protocol. This application can also be
used to test your own integration by using it to change state, run actions etc

The main drawback of this approach is that it tends to be costly since you often need to involve the
application vendor and get custom development done.

Also check out the following presentations:

• Context Management ‑ overview of context management
• Context Management via JSON‑RPC ‑ focuses on the NetString protocol

Considerations for Java

If you are integrating a Java application you can use our pre‑built library to interact with the CCOW
context manager. Maven packages are available at:

• https://gitlab.com/sirenia/open/javaseacowclient/‑/packages
• https://central.sonatype.com/artifact/eu.sirenia.seacow.client/javaseacowclient

WealsoprovideanexampleJavaconsoleapplication that illustrateshowtouse the library. The source
is heavily annotated and documentation is also available online.

Implementing a customwrapper

If the target application exposes an API that has the handles you need for your use‑case (read/write
the required state and/or invoke the required actions like navigation), then you can write a custom
wrapper in .NET (for which we have a small API) or any other language/platform (when using the APIs
described above) which thenmaps between the APIs.

This is also something you can contract out since no special target application knowledge or access
might be needed. This is likely still a costly task but probably not to the same degree as when the
target application must be modified.

6

https://gitlab.com/sirenia/open/dotnetcontextparticipant
https://gitlab.com/sirenia/open/dotnetcontextparticipant
https://slides.sirenia.io/context-management/
https://slides.sirenia.io/context-management-json-rpc/
https://gitlab.com/sirenia/open/javacontextparticipant
https://sirenia.gitlab.io/-/open/javacontextparticipant/-/jobs/7937000817/artifacts/public/src/main/java/JavaContextParticipant/RootCmd.html

	Introduction
	Integration types
	The target application
	Approaches to integration
	Automation
	Using the Manatee external CCOW API
	Implementing a custom wrapper

